p53 Deficiency leads to compensatory up-regulation of p16INK4a.
نویسندگان
چکیده
p53-p21-cyclin-dependent kinase and p16(INK4a)-cyclin-dependent kinase pathways have parallel functions in preventing tumorigenesis. In cancer patients, tumor suppressor p53 is frequently inactivated through mutations, whereas p16(INK4a) is silenced through promoter methylation. However, the interaction between these two pathways is less well understood. Here, we report that p53 controls p16(INK4a) expression in a unique way. p53 deficiency led to up-regulation of p16(INK4a) in primary mouse embryonic fibroblasts, osteoblasts, and various mouse organs, and an increase in the p16(INK4a) promoter activity, without affecting the half-life of p16(INK4a). Reconstitution of p53, but not mutant p53, restored the proper expression of p16(INK4a). These results indicate that p53 is necessary in repressing p16(INK4a) expression. However, up-regulation of p53 in response to genotoxic stress or nutlin-3 treatment did not down-regulate p16(INK4a). p53 did not repress the p16(INK4a) promoter activity either. These findings suggest that p53 has a necessary but not sufficient role in repressing p16(INK4a) expression. p16(INK4a) elevation in p53(-/-) cells is, at least partially, mediated by Ets1, a known positive regulator of p16(INK4a), as p53 deficiency up-regulated Ets1 through protein stabilization and knockdown of Ets1 down-regulated p16(INK4a) expression in p53(-/-) mouse embryonic fibroblasts. These studies uncover a compensatory mechanism for the loss of p53 and provide a basis for targeting both p53 and p16(INK4a) in cancer therapy.
منابع مشابه
Jun dimerization protein 2 controls hypoxia‐induced replicative senescence via both the p16Ink4a‐pRb and Arf‐p53 pathways
The main regulators of replicative senescence in mice are p16Ink4a and Arf, inhibitors of cell cycle progression. Jun dimerization protein 2 (JDP2)-deficient mouse embryonic fibroblasts are resistant to replicative senescence through recruitment of the Polycomb repressive complexes 1 and 2 to the promoter of the gene that encodes p16Ink4a and inhibits the methylation of lysine 27 of the histone...
متن کاملSpotlight on p63 p63, Cellular Senescence and Tumor Development
Deficiency of p63, a p53-related protein, causes severe defects in epithelial morphogenesis. Studies of p63-compromised mouse models reveal that p63 deficiency induces cellular senescence both in cultured cells and in vivo, through regulation p19Arf/p53 and p16Ink4a/Rb pathways. An extensive tumor study of p63-compromised mice demonstrated that p63 deficiency does not predispose to, but rather ...
متن کاملThe p16INK4a tumor suppressor controls p21WAF1 induction in response to ultraviolet light
p16INK4a and p21WAF1, two major cyclin-dependent kinase inhibitors, are the products of two tumor suppressor genes that play important roles in various cellular metabolic pathways. p21WAF1 is up-regulated in response to different DNA damaging agents. While the activation of p21WAF1 is p53-dependent following -rays, the effect of ultraviolet (UV) light on p21WAF1 protein level is still unclear. ...
متن کاملRibosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family.
Mutations in several ribosomal proteins (RPs) lead to Diamond-Blackfan anemia (DBA), a syndrome characterized by defective erythropoiesis, congenital anomalies, and increased frequency of cancer. RPS19 is the most frequently mutated RP in DBA. RPS19 deficiency impairs ribosomal biogenesis, but how this leads to DBA or cancer remains unknown. We have found that rps19 deficiency in ze-brafish res...
متن کاملEffect of 5- azacytidine (5-aza-CR on the expression of DNMT1, DNMT3A, DNMT3B, p14ARF, p16INK4a, and p15INK4b, cell growth inhibition and apoptosis induction lung cancer A549 cell line
Background and aim: Lung cancer is one of the most leading causes of cancer death in males and females and the second leading cause of cancer death. Epigenetic alterations, including DNA hypermethylation, histone deacetylation, and miRNAs lead to the silencing of tumor suppressor genes (TSGs) resulting in tumorigenesis. This change has been reported in various cancers. The activity of DNA meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2009